Выпечка науки и игры

Ваше творчество, Let's play - Рассказы - Графика - Живопись - Моделизм и.т.д
Аватара пользователя

Автор темы
ziggaCrazy
Сообщения: 500
Зарегистрирован: 13 авг 2014, 19:26
Репутация: 35
Имя: Богдан Чистяков
Откуда: Оттуда ;)
Благодарил (а): 28 раз
Поблагодарили: 61 раз
Контактная информация:

Re: Выпечка науки и игры

#101

Сообщение ziggaCrazy » 08 янв 2015, 20:20

Эти пришельцы лишь их часть, скомканная часть, у которой нет уже души, мысли и прочие факторы. Так как они могли собрать мозг!? С помощью шаманов-ученых... Но ДНК пришельцев и ДНК человека ну... Не со стыкуется никаким образом! Они конечно выжили и как-то сформировались. Но это было не надолго, вот и придумали таблетки. Таблетки работают как стабилизатор. Сами таблетки предположительно создали из ресурсов пришельцев, хотя изучать их пришлось крайне долго как и создания экземпляров и продвижения генетики в это время шли не так-то просто.
Я могу написать больше, не против?
Это я об предположении, ничего постороннего нет.


ī๔єұค กคђīกคєҭςค ร ๏รก๏, ค รค๓ค ī๔єค กคђīกคєҭςค ร р๏๔๔гєงī๏ก

https://drive.google.com/folder/d/0B-uu ... RXVkE/edit
Если вам нужно ;)

Аватара пользователя

artemochka
Сообщения: 1796
Зарегистрирован: 19 авг 2014, 13:04
Репутация: 41
Имя: Артемка
Благодарил (а): 290 раз
Поблагодарили: 151 раз

Re: Выпечка науки и игры

#102

Сообщение artemochka » 09 янв 2015, 18:33

А теперь, простите, обо мне:

Саня Рубкин, ну или Виктор, кому как удобно, знает немного обо мне и даже познакомился с моей сестрой. Не знаю, что он может сейчас обо мне написать, но я думаю, только самое хорошее. Ему, за терпение по отношению ко мне и к моим рассказам, большое спасибо. Надеюсь, встретимся в будущем еще.

Теперь, реально обо мне:

Люблю я в книгах подробности. Подробности атмосферы мира, который описывается в книге, героев, что переживают события книги, да и собственно, моего любимого раздела в книгах, оружия. За это могу поблагодарить таких писателей, которые сейчас в узких кругах считаются именитыми знаменитостями - Калугин Алексей, Орехов Василий, Зорич Александр и др. У каждого подробности расписываются по разному, но они мне нравятся по разным причинам. Орехов хорошо расписывает боевые сцены, Калугин задушевно пишет романы, Зорич так вообще не смотрит на других и просто создает с нуля новые миры. За что им огромное спасибо.

Фильмы? Тут немного по другому. В современности люблю смотреть мультики, фильмы забросил из-за невнятности и банальности. Да, появляются иногда шедевры, но это обычно происходит либо раз в году, либо вообще не происходит. Из последних мультиков, что я смотрел, был Гадкий Я. Интересен был из-за специфического юмора и главного героя, который, несмотря на свою вредность, в душе остается хорошим человеком. Смешной и очень поучительный мультик. Из фильмв постоянно пересматриваю классику трешаков 80-90-х, Коммандо, Хищник, Чужой, Чужие, Разборка в маленьком Токио и т.д. Причем как на телеке, так и в инете. Без разницы.

Из сериалов могу отметить только Сверхъестественное, или Натуралы, как мы их с братом называем. Непередаваемая атмосфера, юмор Дина, из-за которого зритель способен забыть о мрачной атмосфере сериала и немного "поржать" над неумелым ботаником-братишкой и некоторыми приколами над NPC сериала. И еще - не нравились мне в сериале сюжетные серии, всегда получал кайф от мелких заданий - охота на призраков, оборотней, штриг, ракшас. Клевый и незабитый сериал, как щас принято. Больше не смотрю, да и не хочу смотреть сериалов. Потому, как они все построены либо на полицейских буднях, либо на вампирских отношениях. Даже не просите.

Как то так ;)


Самое опасное зло лишь то, что добром прикидывается.

Аватара пользователя

рубкин
Сообщения: 1138
Зарегистрирован: 02 июн 2014, 21:02
Репутация: 120
Откуда: Из хаоса безумия и кофе
Благодарил (а): 110 раз
Поблагодарили: 135 раз

Re: Выпечка науки и игры

#103

Сообщение рубкин » 12 янв 2015, 19:24

Я, как вредный и жадный Казначей, не буду рассказывать о себе. :D
Артем как познакомил меня с сестрой, так и охладил пыл. Она занята. :cry:
И если никто не забыл, мы тут логикой и наукой занимаемся. Пишите что-нибудь связанное с наукой (или КОПнаукой)! :evil:


Птицей Гермеса меня называют, cвои крылья пожирая сам себя я укрощаю.

Аватара пользователя

artemochka
Сообщения: 1796
Зарегистрирован: 19 авг 2014, 13:04
Репутация: 41
Имя: Артемка
Благодарил (а): 290 раз
Поблагодарили: 151 раз

Re: Выпечка науки и игры

#104

Сообщение artemochka » 15 янв 2015, 11:24

Сань, не пали контору!!!


Самое опасное зло лишь то, что добром прикидывается.

Аватара пользователя

Jet Xarison
Сообщения: 1136
Зарегистрирован: 26 июл 2013, 11:46
Репутация: 58
Имя: Мопс @.@
Откуда: Из будущего...
Благодарил (а): 270 раз
Поблагодарили: 117 раз

Re: Выпечка науки и игры

#105

Сообщение Jet Xarison » 15 янв 2015, 12:52

Чет подозртельно...

Дежавю, да?


Стратег -—––-—--—--—~—-—--—-~—— Состою в КОП –——–——–—–-—~——
Три года на канале -—-~-—––—-–~—— Мастер вселенной XCOM -———~——
Информирую о играх -–~-—--—––~—— Изучаю механику и лор игр –––~——

Аватара пользователя

рубкин
Сообщения: 1138
Зарегистрирован: 02 июн 2014, 21:02
Репутация: 120
Откуда: Из хаоса безумия и кофе
Благодарил (а): 110 раз
Поблагодарили: 135 раз

Re: Выпечка науки и игры

#106

Сообщение рубкин » 15 янв 2015, 15:35

Нас спалили :shock:
Срочно улетаю в Антарктиду, а из неё в США, а уж от туда...


Птицей Гермеса меня называют, cвои крылья пожирая сам себя я укрощаю.

Аватара пользователя

Jet Xarison
Сообщения: 1136
Зарегистрирован: 26 июл 2013, 11:46
Репутация: 58
Имя: Мопс @.@
Откуда: Из будущего...
Благодарил (а): 270 раз
Поблагодарили: 117 раз

Re: Выпечка науки и игры

#107

Сообщение Jet Xarison » 15 янв 2015, 15:38

Придумывает новую контору и пишем про погоню за Рубкиным )))


Стратег -—––-—--—--—~—-—--—-~—— Состою в КОП –——–——–—–-—~——
Три года на канале -—-~-—––—-–~—— Мастер вселенной XCOM -———~——
Информирую о играх -–~-—--—––~—— Изучаю механику и лор игр –––~——

Аватара пользователя

рубкин
Сообщения: 1138
Зарегистрирован: 02 июн 2014, 21:02
Репутация: 120
Откуда: Из хаоса безумия и кофе
Благодарил (а): 110 раз
Поблагодарили: 135 раз

Re: Выпечка науки и игры

#108

Сообщение рубкин » 15 янв 2015, 15:55

Jet Xarison писал(а):Придумывает новую контору и пишем про погоню за Рубкиным )))
Не надо. Одной конторы нам хватит по гроб жизни.

Добавлено через 6 дней 2 часа 17 минут 54 секунды

Решите загадку самостоятельно, без помощи интернета.
Изображение

Добавлено через 2 месяца 15 дней 22 часа 9 минут 13 секунд

Магии нет. Физики нет. Есть только Реальность Мира, и каждый Мир обладает своей реальностью.
Мир не ограничивается одной планетой или вселенной, или временем, или историей. Мир бесконечен, но каждый его момент обладает своей Реальностью Мира. Каждая молекула может быть Миром, но каждая вселенная может оказаться молекулой.
Все живущие во всех мирах, имеют свою персональную реальность, так или иначе влияющую на Реальность Мира.
Заклинаний нет. Плетений нет. Печатей нет. Магических артефактов нет. Все это части одной реальности мира.
Если персональная реальность Сапиена достаточна для влияния на реальность мира, то все это есть, но чьим законам это будет подчиняться, зависит только от Мира.
Богов нет. Демонов нет. Богоподобных нет. Есть только Мысли, создающие Разум. Разум, создающий реальность. И Логика, которая ими управляет.
Магической энергии нет. Есть только Воля, не дающая Мыслям покинуть Разум.
Материи нет. Она создана Реальностью Мира и подчиняется ей.
Даже Боги не властны над Миром. Они лишь имеют сил больше чем остальные Сапиены.
Логика каждого Сапиена не подчиняется Логике другого Сапиена. Как и Логика Мира, не подчиняется им.
Нет Хаоса. Нет Порядка. Есть лишь Судьба, что ведет тебя к концу. И Случай, что идет с ней рука об руку.
Нет Конца.
МИР ПРЕКРАСЕН!



Аватара пользователя

рубкин
Сообщения: 1138
Зарегистрирован: 02 июн 2014, 21:02
Репутация: 120
Откуда: Из хаоса безумия и кофе
Благодарил (а): 110 раз
Поблагодарили: 135 раз

Re: Выпечка науки и игры

#109

Сообщение рубкин » 26 май 2015, 19:56

В романе «Уравнение Януса» писатель Стивен Спрюлл исследует одну из душераздирающих личностных проблем, связанных с путешествиями во времени. В центре сюжета книги блестящий математик, поставивший себе целью разгадать тайну путешествий во времени. Он встречает необычную красавицу, они становятся любовниками, — но при этом он ничего не знает о ее прошлом. Мучимый любопытством, он пытается узнать, кто же такая его таинственная возлюбленная. Постепенно выясняется, что когда-то она изменила свою внешность при помощи пластической операции. И изменила пол, также при помощи операции.

В конце концов оказывается, что на самом деле «она» — путешественник во времени, прибывший из будущего; мало того, на самом деле «она» — это он сам, только из будущего. Получается, что он занимался любовью сам с собой. Остается только гадать, что произошло бы, появись у них ребенок? И если бы этот ребенок отправился назад, в прошлое, вырос бы там и стал математиком (тем самым, который фигурировал в начале истории)? Можно ли быть самому себе и матерью, и отцом, и сыном, и дочерью?

Как изменить прошлое

Время — одна из величайших загадок Вселенной. Река времени уносит нас всех без исключения, независимо от нашего желания и даже против воли. Еще в 400 г. н.э. Блаженный Августин много писал о парадоксальной природе времени: «А как могут быть эти два времени, прошлое и будущее, когда прошлого уже нет, а будущего еще нет? И если бы настоящее всегда оставалось настоящим и не уходило в прошлое, то это было бы уже не время, а вечность». Если продолжить логически мысль Августина, получится, что время вообще невозможно, потому что прошлое уже ушло, будущее не существует, а настоящее существует лишь мгновение. (После этих рассуждений Блаженный Августин задается глубокими теологическими вопросами о том, как время влияет на Бога, — вопросами, которые не потеряли смысл и сегодня. Если Господь всезнающ и всемогущ, писал Блаженный Августин, то связан ли Он течением времени? Другими словами, приходится ли Богу спешить, опаздывая на важную встречу, как делаем мы, смертные? Сам Августин делает такой вывод: Господь всемогущ и потому не может быть ограничен чем бы то ни было, в том числе и течением времени; следовательно, он должен существовать «вне времени». Хотя на первый взгляд концепция существования вне времени представляется абсурдной, это одна из тех идей, которые, как мы еще убедимся, снова и снова возникают в современной физике.)

Подобно Блаженному Августину, каждый из нас в какой-то момент задумывался о странной и загадочной природе времени и о том, как сильно время отличается от пространства. Если в пространстве мы можем без труда двигаться в любом направлении, то почему во времени все иначе? Каждый из нас задумывался и о том, что ждет человечество после нас. Век отдельного человека ограничен, но всем нам ужасно интересно все, что произойдет в будущем, после нас.

Желание человека путешествовать во времени родилось, вероятно, одновременно с самим человеком, но первая записанная история о путешествии во времени — «Мемуары о двадцатом столетии» — принадлежит перу Сэмьюела Мэддена и относится к 1733 г. В ней рассказывается об ангеле из 1997 г., который перенесся на 250 лет назад, чтобы передать британскому послу документы с описанием мира будущего.

Позже таких историй появилось множество. В 1838 г. вышло произведение анонимного автора «В ожидании дилижанса: анахронизм»; его герой, ожидая дилижанса, неожиданно переносится на тысячу лет в прошлое. Он встречает монаха древнего монастыря и пытается рассказать ему, как будет развиваться история в следующую тысячу лет, Через некоторое время он столь же неожиданно переносится обратно в настоящее; единственный результат — его дилижанс уже ушел.

Путешествия во времени можно обнаружить в самых неожиданных произведениях — как, например, в романе Чарльза Диккенса «Рождественская история», написанном в 1843 г.; героя романа, Эбенезера Скруджа, переносят в прошлое и будущее и показывают мир, каким он был прежде и каким будет после его смерти.

В американской литературе путешествия во времени впервые появляются у Марка Твена в романе 1889 г. «Янки из Коннектикута при дворе короля Артура». Янки XIX в. переносится назад во времени и оказывается при дворе короля Артура в 528 г. от Рождества Христова. Его берут в плен и собираются сжечь на костре, но находчивый янки объявляет, что обладает властью погасить солнце, ведь он знает, что в этот самый день должно состояться солнечное затмение. Когда луна закрывает собой солнце, толпа приходит в ужас; янки отпускают и осыпают милостями, лишь бы он вернул им солнечный свет.

Но первой серьезной попыткой исследовать путешествия во времени в художественной литературе стал классический роман Герберта Уэллса «Машина времени»; в нем герой отправляется на сотни тысяч лет в будущее. Оказывается, в этом отдаленном будущем человечество генетически расколото на две расы — воинственных морлоков, которые ухаживают за мрачными подземными машинами, и беззаботных, похожих на детей элоев, которые радуются и танцуют наверху на солнечных полянах, не подозревая и не задумываясь об ожидающей их ужасной участи (быть съеденными морлоками).

После Уэллса путешествия во времени стали привычной деталью научно-фантастических произведений, от «Звездного пути» до «Назад в будущее». В фильме «Супермен» главный герой, узнав о гибели Лоис Лейн, в отчаянии решает повернуть назад стрелки времени; он начинает носиться вокруг Земли и обгоняет свет, пока само время не поворачивает назад. Земля замедляет вращение, останавливается и наконец начинает вращаться в обратную сторону — и все часы на Земле начинают обратный отсчет. Воды потопа с ревом устремляются обратно, прорванные дамбы чудесным образом восстанавливаются, и Лоис Лейн возвращается к жизни.

С точки зрения науки можно сказать, что путешествия во времени были решительно невозможны в ньютоновой вселенной, где время текло равномерно и прямолинейно. Однажды случившееся не могло измениться ни при каких обстоятельствах. Одна секунда на Земле равнялась одной секунде в любой другой точке Вселенной. Эйнштейн опроверг эту концепцию и показал, что время больше похоже на извилистую реку, которая пересекает Вселенную; петляя меж звезд и галактик, оно ускоряется и замедляется. Так что одна секунда на Земле вовсе не абсолютна; время в разных точках Вселенной течет по-разному.

Как я уже рассказывал, согласно специальной теории относительности Эйнштейна время в ракете замедляется, причем тем сильнее, чем быстрее она движется. Писатели-фантасты любят рассуждать о том, что, если удастся преодолеть световой барьер, то можно будет вернуться назад по времени. На самом деле это невозможно — ведь чтобы достичь скорости света, вам придется обзавестись и бесконечной массой. Скорость света — непреодолимый барьер для любой ракеты. Экипаж «Энтерпрайза» в сериале «Звездный путь IV: Путешествие домой» похитил космический корабль Клинтонов, разогнал его гравитационным маневром вокруг местного солнца, преодолел световой барьер и оказался в Сан-Франциско 1960-х гг. На самом деле это противоречит законам физики.

Тем не менее путешествия в будущее возможны, и это экспериментально подтверждено уже миллионы раз. Даже путешествие героя «Машины времени» в далекое будущее в принципе возможно. Если астронавт будет двигаться с околосветовой скоростью, на дорогу до одной из ближайших звезд ему может потребоваться, скажем, одна минута. На Земле при этом пройдет четыре года, но для него лично время сдвинется всего лишь на одну минуту, потому что время в корабле сильно замедлится. Получится, что астронавт при этом переместится в будущее Земли на четыре года. (Вообще говоря, наши астронавты совершают короткое путешествие в будущее каждый раз, когда летают в космос. Пока они летают вокруг Земли со скоростью 8 км/с, их часы идут чуть медленнее, чем часы на Земле. Можно подсчитать, что за время годичной экспедиции на космической станции они к моменту возвращения на Землю перемещаются в будущее на долю секунды. Мировой рекорд в путешествиях во времени принадлежит в настоящее время российскому космонавту Сергею Авдееву, который за 748 суток, проведенных на орбите, переместился в будущее уже на 0,02 с.)

Итак, машина времени для путешествий в будущее не противоречит специальной теории относительности Эйнштейна. Но как обстоит дело с путешествиями в прошлое?

Если бы мы могли путешествовать в прошлое, изучать историю было бы невозможно. Стоило бы историку записать прошедшие события, как кто-нибудь мог вернуться в прошлое и изменить его. Машина времени не только лишила бы историков работы, но и позволила бы нам произвольно изменять его течение. Если бы, к примеру, кто-нибудь отправился в прошлое, в эру динозавров, и случайно раздавил бы первое млекопитающее — нашего общего предка, — он мог бы стереть с лица Земли весь род человеческий. В лучшем случае история превратилась бы в бесконечный сумасшедший аттракцион, когда повсюду сновали бы туристы из будущего с фотоаппаратами и пытались получше заснять исторические события.

Путешествия во времени: игровая площадка для физиков

Пожалуй, можно сказать, что больше остальных отличился в математических джунглях черных дыр и машин времени космолог Стивен Хокинг. В отличие от других знатоков относительности, которые, как правило, еще в раннем возрасте проявляют себя в математической физике, Хокинг в юности не был выдающимся студентом. Было очевидно, что он чрезвычайно умен, но преподаватели часто замечали, что он не всегда сосредоточен на занятиях и не работает в полную силу. Поворотным для Хокинга стал 1962 г.; после окончания Оксфорда молодой физик впервые начал замечать у себя симптомы амиотрофического латерального склероза (ALS, или болезнь Лу Герига). Он был потрясен известием о том, что страдает неизлечимым нейродегенеративным заболеванием, которое лишит его всех двигательных функций и, скорее всего, быстро убьет. Можно представить себе, как расстроила молодого человека эта новость. Какой смысл получать степень доктора философии, если все равно скоро умрешь?

Но чуть позже, преодолев первый шок, Хокинг сосредоточился на работе — может быть, первый раз в жизни. Поняв, что времени у него немного, он предпринял яростную атаку на некоторые самые сложные проблемы общей теории относительности. В начале 1970-х гг. Хокинг опубликовал знаковую серию научных работ и в них показал, что сингулярности в теории Эйнштейна (точки, где гравитационное поле становится бесконечным, как, например, происходит в центре черной дыры или происходило в момент Большого взрыва) являются существенной частью релятивистской картины мира и не могут быть просто так сброшены со счетов (как полагал сам Эйнштейн). В 1974 г. Хокинг также доказал, что черные дыры, вообще говоря, не совсем черные; они потихоньку излучают то, что сейчас называют излучением Хокинга, потому что излучение способно просочиться даже через гравитационное поле черной дыры. Эта работа стала первой серьезной попыткой применить квантовую теорию к теории относительности, и это самая известная работа Хокинга.

Как и предсказывали врачи, ALS постепенно вызвал у Хокинга паралич рук, ног и даже голосовых связок, но все происходило гораздо медленнее, чем они думали первоначально. В результате он пережил уже многих нормальных людей, стал отцом троих детей (а теперь уже и дедом), в 1991 г. развелся со своей первой женой, через четыре года женился на жене человека, который сконструировал для него голосовой синтезатор, а в 2006 г. подал на развод и с этой женой. В 2007 г. Стивен снова попал на первые полосы газет — он стал пассажиром специального реактивного самолета и побывал в невесомости, исполнив таким образом давнюю мечту. Его следующая цель — побывать в космосе.

Сегодня Хокинг почти полностью парализован, передвигается в инвалидном кресле и общается с внешним миром посредством движения глаз. Но даже в таком бедственном состоянии он умудряется шутить, пишет научные работы, читает лекции и участвует в дискуссиях. Одними глазами он выдает больше научных результатов, чем целые команды ученых, вполне владеющих своими телами. (Его коллега по Кембриджскому университету сэр Мартин Рис, которого королева назначила Королевским астрономом, как-то признался мне, что болезнь не позволяет Хокингу заниматься скучными математическими расчетами, необходимыми в большой науке. Поэтому вместо этого он сосредоточивается на генерации новых свежих идей, а расчетами могут заниматься и его студенты.)

В 1990 г. Хокинг ознакомился с работами коллег, в которых предлагались всевозможные версии машины времени, и отнесся к ним очень критически. Интуиция подсказывала ему, что путешествия во времени невозможны, — иначе почему мы не встречаем у себя туристов из будущего? Если бы съездить куда-нибудь в прошлое было бы так же просто, как устроить воскресный пикник в парке, мы каждый день встречали бы на улицах гостей из будущего, а они приставали бы к нам с просьбами сфотографироваться с ними для семейного альбома.

И Хокинг бросил миру физики вызов. Он заявил: должен существовать закон, запрещающий путешествия во времени. Иначе говоря, он предложил «гипотезу о защите хронологии», которая исключила бы путешествия во времени на основании законов природы и «сохранила историю для историков».

Но произошло неожиданное. Как они ни старались, физики не могли отыскать закон, который прямо запрещал бы путешествия во времени. По всей видимости, они ни в чем не противоречат известным законам природы. Сам Хокинг, также не в состоянии выявить запрет, не так давно изменил свое мнение. Он снова попал в заголовки газет, заявив: «Если путешествия во времени и возможны, то они неосуществимы».

Да, если прежде путешествия во времени рассматривались в лучшем случае как околонаучная тема, то теперь они внезапно превратились в любимую игрушку физиков-теоретиков. Физик Кип Торн из Калифорнийского технологического института пишет: «Когда-то путешествия во времени были исключительной прерогативой писателей-фантастов. Серьезные ученые избегали их как чумы — даже когда писали под псевдонимом романы или тайком читали их. Как изменились времена! Теперь в серьезных научных журналах можно обнаружить ученый анализ путешествий во времени, принадлежащий перу выдающихся физиков-теоретиков... Откуда такая перемена? Просто мы, физики, поняли, что природа времени — слишком важная тема, чтобы отдавать ее на откуп писателям-фантастам».

Причина всей этой суеты и путаницы в том, что уравнения Эйнштейна допускают существование множества разных типов машины времени. (Правда, пока неясно, устоят ли они перед проверкой при помощи квантовой теории.) Более того, в теории Эйнштейна мы часто встречаем нечто под названием «замкнутая времяподобная кривая»; это технический термин для путей, которые позволяют путешествия в прошлое. Если следовать вдоль замкнутой времяподобной кривой, то можно вернуться из путешествия раньше, чем мы в него отправились.

Первый тип машины времени предусматривает использование кротовых нор. Уравнения Эйнштейна имеют немало решений, соединяющих две удаленные точки пространства. Но поскольку время и пространство в теории Эйнштейна тесно переплетены, эта же кротовая нора может и соединять две точки во времени. Упав в кротовую нору, можно переместиться (по крайней мере, математически) в прошлое. Вроде бы после этого можно вновь переместиться в первоначальную точку и встретить там самого себя перед стартом. Но, как мы уже упоминали в предыдущей главе, кротовая нора в центре черной дыры — это дорога в один конец. «Не думаю, что вопрос в том, может ли человек, находясь в черной дыре, попасть в прошлое, — говорит физик Ричард Готт. — Вопрос в том, сможет ли он выбраться оттуда, чтобы похвастаться».

Другая машина времени может «работать» во вращающейся Вселенной. В 1949 г. знаменитый математик Курт Гёдель нашел первое решение уравнений Эйнштейна, имеющее отношение к путешествиям во времени. Если Вселенная вращается, то, обогнув ее достаточно быстро, можно оказаться в прошлом и попасть в точку старта раньше, чем вы оттуда отправились. Получается, что путешествие вокруг Вселенной одновременно является путешествием назад во времени. Когда в Институте перспективных исследований появлялись астрономы, Гёдель часто спрашивал, имеются ли у них доказательства того, что Вселенная вращается. К его разочарованию, те отвечали, что Вселенная точно расширяется, но вот суммарный спин Вселенной, вероятно, равен нулю. (В противном случае путешествия во времени, возможно, стали бы привычными, а история в том виде, в каком мы ее знаем, перестала бы существовать.)

Третий вариант: если вы будете двигаться вокруг бесконечно длинного вращающегося цилиндра, вы тоже, возможно, вернетесь раньше, чем отправились в путь. (Это решение Биллем ван Стокум нашел в 1936 г., раньше Гёделя, но автор, по-видимому, не подозревал, что его решение позволяет путешествовать во времени,) Здесь получается, что если как следует поплясать вокруг шеста с лентами на майском празднике, то можно ненароком оказаться в предыдущем апреле. (Проблема, однако, заключается в том, что цилиндр должен быть бесконечным и вращаться так быстро, что большинство материалов не выдержит и разлетится на кусочки.)

Последний на данный момент вариант путешествий во времени обнаружил в 1991 г. Ричард Готт из Принстона. Его решение основывается на обнаружении в пространстве гигантских космических струн (возможно, оставшихся со времен Большого взрыва). Допустим, предположил он, что две такие космические струны собираются столкнуться. Так вот, если быстро обогнуть эти струны в момент столкновения, попадешь в прошлое. Достоинством этого типа машины времени является то, что вам не потребуются бесконечные вращающиеся цилиндры, вращающаяся Вселенная или даже черные дыры. Проблема, однако, состоит в том, что вам придется сначала отыскать в пространстве эти самые громадные космические струны, а потом заставить их столкнуться определенным образом. К тому же и «дорога» в прошлое при этом откроется на очень короткий промежуток времени. Готт говорит: «Коллапсирующая струнная петля, достаточно большая, чтобы ее можно было обогнуть один раз и вернуться при этом на один год назад, по своей массе-энергии должна превосходить половину галактики».

Но самая многообещающая схема машины времени — так называемые обратимые кротовые норы, упомянутые в предыдущей главе. Это дыры в пространстве-времени, где человек может свободно перемещаться вперед и назад во времени. Теоретически обратимые кротовые норы — это возможность не только путешествовать быстрее света, но и перемещаться во времени. Ключ к обратимым кротовым норам — отрицательная энергия.

Машина времени для обратимых кротовых нор должна состоять из двух камер; каждая камера — из двух концентрических сфер, разделенных крошечным промежутком. Если обжать наружную сферу внутрь, по направлению к внутренней сфере, то между двумя сферами возникнет эффект Казимира и в результате отрицательная энергия. Предположим, что некая цивилизация III типа способна протянуть кротовую нору между двумя этими камерами (возможно, соорудить ее можно будет из пространственно-временной пены). Далее берем первую камеру и отправляем ее в пространство на околосветовой скорости. Время в этой камере замедляется, и часы в двух камерах теряют синхронность. Время в двух камерах, соединенных кротовой норой, идет с разной скоростью.

Находясь во второй камере, можно по кротовой норе мгновенно переместиться в первую, которая существует в более раннем времени, и оказаться в прошлом.

Реализация этой схемы связана с очень серьезными трудностями. Так, кротовая нора может оказаться совсем крошечной, намного меньше размеров атома. А концентрические сферы, возможно, потребуется обжать до расстояний планковского масштаба, чтобы получить достаточно отрицательной энергии. И последнее. Вы сможете возвращаться назад во времени лишь только в тот момент, когда была создана данная машина времени — ведь до этого момента время в обеих камерах шло совершенно синхронно!

Парадоксы и загадки времени

Путешествия во времени порождают множество проблем, как технических, так и социальных. Ларри Дуайер поднимает всевозможные моральные, юридические и этические вопросы; он говорит: «Следует ли предъявить обвинения путешественнику во времени, если он побил самого себя, только более молодого (или наоборот)? Если путешественник во времени совершит убийство и скроется в прошлом, следует ли судить его в прошлом за преступление, которое ему еще только предстоит совершить? Если он женится в прошлом, то можно ли судить его за двоеженство, если другой жене предстоит родиться, скажем, через пять тысяч лет?»

Но возможно, самые труднорешаемые проблемы — это логические парадоксы, которые возникают при путешествиях во времени. Что произойдет, к примеру, если мы убьем своих родителей до своего рождения? Это логически невозможно, поэтому получается парадокс — иногда его называют «парадокс дедушки».

Существует три способа разрешить эти парадоксы. Во-первых, не исключено, что при возвращении в прошлое вам просто придется еще раз пережить все то же самое, восстановив тем самым историю в прежнем ее виде. В этом случае вы лишены свободы воли и вынуждены повторять прошлое в том виде, в каком оно единожды было реализовано. В этой ситуации получается, что если вы отправляетесь в прошлое, чтобы передать самому себе секрет путешествий во времени, то, значит, именно так все и должно было произойти: секрет путешествий во времени действительно был доставлен из будущего. Такова судьба. (Надо сказать, при этом остается неясным, откуда взялась первоначальная идея.)

Второй вариант. Вы обладаете свободой воли и, соответственно, можете изменять прошлое, но в ограниченных пределах. Ваша свобода воли работает до тех пор, пока вы не создаете временных парадоксов. Стоит вам попытаться убить родителей до своего рождения, и загадочная сила не даст вам спустить курок. Эту позицию отстаивает российский физик Игорь Новиков. (Он аргументирует это следующим образом. Существует, к примеру, закон природы, не позволяющий нам ходить по потолку, хотя мы можем этого захотеть. Почему не предположить, что существует закон, который не даст нам убить родителей до нашего рождения? Вот просто так, неизвестная сила не даст нам спустить курок.)

Наконец, третий вариант. Вселенная расщепляется на две. Люди, которых вы убили, в точности похожи на ваших родителей, но на самом деле ими не являются, поскольку вы уже находитесь в параллельной вселенной. Похоже, именно этот вариант соответствует квантовой теории; я расскажу об этом позже, когда буду говорить о Мультивселенной.

Второй вариант рассмотрен в фильме «Терминатор-3», где Арнольд Шварценеггер играет робота из будущего, в котором власть захватили агрессивные машины. На немногих оставшихся в живых людей машины охотятся, как на зверей; но машины не в силах уничтожить лидера сопротивления. Машины направляют целую серию роботов-убийц в прошлое, в момент незадолго до рождения лидера, с заданием уничтожить его мать. Но в конце концов, после эпических сражений, в финале фильма машины все же уничтожают человеческую цивилизацию, как и планировали с самого начала.

Фильм «Назад в будущее» рассматривает третий вариант решения. Доктор Браун изобретает машину, работающую на плутонии, на базе старого автомобиля DeLorean; на самом деле это машина времени для путешествия в прошлое. Марти Макфлай (в исполнении Майкла Фокса) садится в машину, отправляется в прошлое и встречается там со своей молоденькой матерью, которая затем влюбляется в него. Возникает сложная проблема. Если будущая мать Марти отвергнет его будущего отца и они не поженятся, то герой Фокса просто не родится на свет.

Проблему немного проясняет док Браун. Он рисует на доске горизонтальную линию, представляющую течение времени в нашей Вселенной, Затем он рисует вторую линию, которая ответвляется от первой и представляет параллельную вселенную; она возникает в тот момент, когда вы изменяете прошлое. Таким образом, стоит вам двинуться назад по реке времени, как она тут же разветвляется на два рукава; одна линия времени превращается в две. Этот подход известен как концепция множественности миров, и мы обсудим ее в следующей главе.

Это означает, что все парадоксы времени можно разрешить. Если вы убили своих родителей до вашего рождения, это означает просто, что вы убили людей, которые не являются на самом деле вашими родителями — хотя идентичны им генетически, обладают той же личностью и теми же воспоминаниями.

Идея множественности миров решает по крайней мере одну серьезную проблему путешествий во времени. Для физика проблема номер один, связанная с путешествиями во времени (помимо поисков отрицательной энергии), заключается в том, что последствия излучения будут накапливаться, и в итоге произойдет одно из двух: или вы упадете замертво при попытке войти в машину, или кротовая нора схлопнется, когда вы будете через нее проходить. Эти радиационные эффекты будут накапливаться, потому что любое излучение, попавшее в портал времени, отправится в прошлое; там это излучение выйдет наружу и будет бродить по Вселенной до сегодняшнего дня, когда ему наступит время снова войти в портал. Поскольку излучение может войти в портал бесконечное число раз, внутри портала оно может достичь невероятно высокого уровня — вполне достаточного, чтобы убить любого, кто туда попадет. Но если говорить о версии с «множественными мирами», то эта проблема решится сама собой. Излучение, попавшее в машину времени, действительно отправляется в прошлое, но попадает в новую вселенную; оно не может входить в портал времени снова, снова и снова. Это означает, что существует бесконечное число вселенных, для каждого цикла своя, и в каждом цикле в портал времени проникает лишь один фотон излучения — а не бесконечно много.

В 1997 г., когда трем физикам удалось наконец доказать, что намерение Хокинга раз и навсегда запретить путешествия во времени некорректно в принципе, спорные вопросы слегка прояснились. Бернард Кей, Марек Радзиковски и Роберт Уолд показали, что путешествия во времени не противоречат никаким известным физическим законам, за исключением одного момента. Когда речь идет о передвижении во времени, все проблемы концентрируются на горизонте событий (расположенном возле входа в кротовую нору). Но этот горизонт — то самое место, где, согласно современным представлениям, теория Эйнштейна уступает место квантовым эффектам. Проблема в том, что, пытаясь рассчитать радиационные эффекты на входе в машину времени, мы вынуждены использовать теорию, которая сочетает в себе общую теорию относительности Эйнштейна и квантовую теорию излучения. Но, как бы мы ни пытались наивно объединить эти две теории, результат получается неубедительным; в некоторых местах ответ получается бесконечным, что лишено смысла.

Вот здесь и приходит время так называемой теории всего. Все проблемы путешествий через кротовые норы, терзающие физиков (к примеру, стабильность кротовой норы, опасное для жизни излучение, схлопывание кротовой норы при попытке пройти через нее), сконцентрированы на горизонте событий — в точности там, где теряет смысл теория Эйнштейна.

Таким образом, ключевым для понимания путешествий во времени является понимание физики горизонта событий — а ее может описать и объяснить только теория всего. Именно поэтому большинство физиков в настоящий момент согласно в том, что единственный способ разрешить вопрос путешествий во времени — разработать полную теорию гравитации и пространства-времени.

Теория всего должна объединить четыре фундаментальных физических взаимодействия Вселенной и позволить нам математически рассчитать, что произойдет при входе в машину времени. Только теория всего могла бы успешно рассчитать радиационные эффекты, создаваемые кротовой норой, и разъяснить вопрос о том, насколько стабильной будет кротовая нора при входе человека в машину времени. Но даже после создания такой теории нам, возможно, придется ждать несколько веков или даже дольше, прежде чем первая машина времени сможет экспериментально проверить ее выводы.

http://planeta.moy.su/blog/fizika_nevoz ... 1-29-41735


Птицей Гермеса меня называют, cвои крылья пожирая сам себя я укрощаю.

Аватара пользователя

рубкин
Сообщения: 1138
Зарегистрирован: 02 июн 2014, 21:02
Репутация: 120
Откуда: Из хаоса безумия и кофе
Благодарил (а): 110 раз
Поблагодарили: 135 раз

Re: Выпечка науки и игры

#110

Сообщение рубкин » 26 май 2015, 19:59

Действительно ли альтернативные вселенные имеют право на существование? В Голливуде они давно стали излюбленным инструментом кинематографистов; в качестве примера можно привести эпизод «Звездного пути» под названием «Зеркало, зеркало». Капитан Кирк случайно попадает в странную параллельную вселенную, где Федерация планет представляет собой зловещую империю, единство которой обеспечивается жестокими завоеваниями, алчностью и грабежом. В этой вселенной Спок носит страшную бороду, а сам капитан Кирк является лидером банды жадных пиратов, всегда готовых обратить своих соперников в рабство и поубивать собственных командиров.

Альтернативные вселенные позволяют нам вволю исследовать мир по имени «что, если бы...» и его чудесные, загадочные возможности. В комиксах серии про Супермена, к примеру, присутствовало несколько альтернативных вселенных; в одной из них родная планета Супермена, Криптон, не взрывалась; в другой Супермен в конце концов раскрывает свою тайну и признается, что он и скромный Кларк Кент — одно лицо; в третьей он женится на ЛоисЛейн и у них рождаются супердети. Но можно ли считать параллельные миры исключительно вотчиной сериала «Сумеречная зона», или для них есть в современной физике серьезные предпосылки?

На протяжении всей истории человечества, включая практически все древние общества, люди верили, что существуют иные сферы, где обитают боги и духи. Церковь верит в существование рая, ада и чистилища. У буддистов есть нирвана и разные плоскости сознания. У индуистов — тысячи миров.

Христианские теологи, не в силах объяснить, где же могут находиться небеса, нередко рассуждают о том, что Бог, возможно, живет где-то в других, высших измерениях. Как ни странно, если бы высшие измерения действительно существовали, многие качества, которые мы приписываем богам, могли бы стать реальностью. Существо в высшем измерении обретало бы способность появляться и исчезать в любом месте по собственному желанию, а также проходить сквозь стены — способности, которыми в представлении человека обычно обладают божества.

В последнее время концепция параллельных вселенных является одной из самых горячо обсуждаемых тем в теоретической физике. Вообще, можно говорить о нескольких типах параллельных вселенных, которые заставляют нас заново пересмотреть наши представления о «реальности». Причем ставкой в теоретическом споре о различных параллельных вселенных служит — ни много ни мало — природа самой реальности.

В научной литературе активно обсуждается по крайней мере три типа параллельных вселенных:

а) гиперпространство, или высшие измерения;
б) мультивселенная;
в) квантовые параллельные вселенные.

Гиперпространство

Самой долгой историей научных дискуссий из всех типов параллельных вселенных может похвастаться параллельная вселенная высших измерений. Здравый смысл и органы чувств говорят нам, что мы живем в трех измерениях (длина, ширина и высота). Как бы мы ни двигали объект в пространстве, его положение всегда можно описать этими тремя координатами. Вообще, этими тремя числами человек может определить точное положение любого объекта во Вселенной, от кончика своего носа до самых отдаленных галактик.

На первый взгляд четвертое пространственное измерение противоречит здравому смыслу. К примеру, когда дым заполняет всю комнату, мы не видим, чтобы он исчезал в другом измерении. Нигде в нашей Вселенной мы не видим объектов, которые внезапно исчезали бы или уплывали в иную вселенную. Это означает, что высшие измерения, если таковые существуют, по размеру должны быть меньше атома.

Три пространственных измерения образуют фундамент, основу греческой геометрии. К примеру, Аристотель в трактате «О небе» писал: «Величина, делимая в одном измерении, есть линия, в двух — плоскость, в трех — тело, и, кроме них, нет никакой другой величины, так как три [измерения] суть все [измерения]». В150 г, н, э. Птолемей Александрийский предложил первое «доказательство» того, что высшие измерения «невозможны». В трактате «О расстоянии» он рассуждает следующим образом. Проведем три взаимно перпендикулярные прямые линии (как линии, которые образуют угол комнаты). Очевидно, провести четвертую линию, перпендикулярную трем первым, невозможно, следовательно, четвертое измерение невозможно. (На самом деле ему удалось доказать таким образом только одно: наш мозг не способен наглядно представить себе четвертое измерение. С другой стороны, компьютеры постоянно занимаются расчетами в гиперпространстве.)

На протяжении двух тысячелетий любой математик, который отваживался заговорить о четвертом измерении, рисковал подвергнуться насмешкам. В 1685 г. математик Джон Уоллис в полемике о четвертом измерении назвал его «чудовищем в природе, возможным не более, нежели химера или кентавр». В XIX в. «король математиков» Карл Гаусс разработал математику четвертого измерения в значительной степени, но побоялся публиковать результаты, опасаясь негативной реакции. Сам он, однако, проводил эксперименты и пытался определить, действительно ли чисто трехмерная греческая геометрия правильно описывает Вселенную. В одном из экспериментов он поместил трех помощников на вершинах трех соседних холмов. У каждого помощника был фонарь; свет всех трех фонарей образовал в пространстве гигантский треугольник. Сам же Гаусс тщательно измерил все углы этого треугольника и, к собственному разочарованию, обнаружил, что сумма внутренних углов треугольника действительно составляет 180°. Из этого ученый заключил, что если отступления от стандартной греческой геометрии и существуют, то они настолько малы, что их невозможно обнаружить подобными способами.

В результате честь описать и опубликовать основы математики высших измерений выпала Георгу Бернхарду Риману, ученику Гаусса. (Через несколько десятилетий эта математика целиком вошла в общую теорию относительности Эйнштейна.) На своей знаменитой лекции в 1854 г. Риман одним махом опрокинул 2000 лет владычества греческой геометрии и установил основы математики высших, криволинейных измерений; мы и сегодня пользуемся этой математикой.

В конце XIX в. замечательное открытие Римана прогремело по всей Европе и вызвало широчайший интерес публики; четвертое измерение произвело настоящую сенсацию среди артистов, музыкантов, писателей, философов и художников. Скажем, историк искусства Линда Дальримпл Хендерсон считает, что кубизм Пикассо возник отчасти под впечатлением от четвертого измерения. (Портреты женщин кисти Пикассо, на которых глаза смотрят вперед, а нос находится сбоку, представляют собой попытку представить четырехмерную перспективу, ведь при взгляде из четвертого измерения можно одновременно видеть лицо, нос и затылок женщины,) Хендерсон пишет: «Подобно черной дыре, четвертое измерение обладало загадочными свойствами, которые не удавалось до конца понять даже самим ученым. И все же четвертое измерение было гораздо более понятным и представимым, чем черные дыры или любые другие научные гипотезы после 1919 г., за исключением теории относительности».

Другие художники тоже пытались рисовать из четвертого измерения. На картине Сальвадора Дали «Распятие» Христос распят перед странным плывущим в пространстве трехмерным крестом, который на самом деле представляет собой развертку четырехмерного куба. В своей знаменитой картине «Упорство памяти» он попытался представить время как четвертое измерение— отсюда и метаформа растекшихся часов. Картина «Обнаженная фигура, спускающаяся по лестнице» Марселя Дюшана — попытка представить время как четвертое измерение через изображение нескольких стадий движения. Четвертое измерение появляется даже у Оскара Уайльда в рассказе «Кентервильское привидение», ведь привидение там живет в четвертом измерении.

Четвертое измерение фигурирует также в нескольких произведениях Герберта Уэллса, включая «Человека-невидимку», «Историю Платтнера» и «Удивительный визит». (В последнем рассказе, который с тех пор успел стать основой десятков голливудских фильмов и научно-фантастических романов, наша Вселенная каким-то образом сталкивается с параллельной вселенной. Несчастный ангел из соседней вселенной попадает под случайный выстрел охотника и проваливается в нашу Вселенную. В конце концов он, потрясенный алчностью, мелочностью и эгоизмом, царящими в нашей Вселенной, кончает жизнь самоубийством.)

Роберт Хайнлайн в романе «Число зверя» исследует идею о параллельных вселенных с иронией. В этом романе четверо храбрых землян носятся по параллельным вселенным на спортивной машине сумасшедшего профессора, способной передвигаться между измерениями.

В телесериале «Скользящие» мальчик под влиянием одной книги решает построить машину, которая позволила бы ему «скользить» между параллельными вселенными. (Можно добавить, что герой сериала прочитал мою книгу «Гиперпространство».)

Но исторически сложилось так, что физики рассматривали четвертое измерение лишь как забавную диковинку. Никаких свидетельств существования высших измерений не было. Положение начало меняться в 1919 г., когда физик Теодор Калуца написал очень спорную статью, в которой намекнул на существование высших измерений. Начав с общей теории относительности Эйнштейна, он поместил ее в пятимерное пространство (четыре пространственных измерения и пятое — время; поскольку время уже утвердилось как четвертое измерение пространства-времени, физики теперь называют четвертое пространственное измерение пятым). Если делать размер Вселенной вдоль пятого измерения все меньше и меньше, уравнения волшебным образом распадаются на две части. Одна часть описывает стандартную теорию относительности Эйнштейна, зато другая превращается в теорию света Максвелла!

Это стало поразительным откровением. Возможно, тайна света скрыта в пятом измерении! Такое решение шокировало даже Эйнштейна; казалось, оно обеспечивает элегантное объединение света и гравитации. (Эйнштейн был так потрясен предположением Калуцы, что два года раздумывал, прежде чем дал согласие на публикацию его статьи.) Эйнштейн писал Калуце: «Идея получить [объединенную теорию] посредством пятимерного цилиндра никогда не пришла бы мне в голову... С первого взгляда мне ваша идея чрезвычайно понравилась... Формальное единство вашей теории поразительно».

Много лет физики задавались вопросом: если свет — это волна, то что, собственно, колеблется? Свет способен преодолевать миллиарды световых лет пустого пространства, но пустое пространство — это вакуум, в нем нет никакого вещества. Так что же колеблется в вакууме? Теория Калуцы позволяла выдвинуть по этому поводу конкретное предположение: свет—это настоящие волны в пятом измерении. Уравнения Максвелла, точно описывающие все свойства света, получаются в ней просто как уравнения волн, которые двигаются в пятом измерении.

Представьте себе рыб, плавающих в мелком пруду. Возможно, они даже не подозревают о существовании третьего измерения, ведь их глаза смотрят в стороны, а плыть они могут только вперед или назад, вправо или влево. Возможно, третье измерение даже кажется им невозможным. Но теперь вообразите себе дождь на поверхности пруда. Рыбы не могут видеть третье измерение, но они видят тени и рябь на поверхности пруда. Точно так же теория Калуцы объясняет свет как рябь, которая двигается по пятому измерению.

Калуца дал также ответ на вопрос, где находится пятое измерение. Поскольку мы не видим вокруг никаких признаков его существования, оно должно быть «свернутым» до столь малой величины, что заметить его невозможно. (Возьмите двумерный лист бумаги и плотно скатайте его в цилиндр. Издалека цилиндр будет казаться одномерной линией. Получается, что вы свернули двумерный объект и сделали его одномерным.)

Поначалу работа Калуцы произвела сенсацию. Но в последующие годы нашлись и серьезные возражения против его теории. Каковы размеры этого нового пятого измерения? Каким образом оно свернулось? Ответов не было.

На протяжении нескольких десятилетий Эйнштейн принимался время от времени работать над этой теорией. Но после его смерти в 1955 г. теорию быстро забыли, она превратилась в забавное примечание на страницах истории физики.

Теория струн

Все изменилось с появлением поразительной новой теории, получившей название теория суперструн. К началу 1980-х гг. физики буквально утонули в море элементарных частиц. Каждый раз, разбивая атом на части при помощи мощного ускорителя частиц, они, к немалому изумлению, обнаруживали, что из расщепленного атома вылетают десятки новых частиц. Такое положение дел настолько обесьсураживало, что Роберт Оппенгеймер заявил: Нобелевскую премию по физике следует отдать тому физику, который за год не откроет ни одной новой частицы! (Энрико Ферми, в ужасе от того, как безудержно плодятся элементарные частицы с греческими буквами в названиях, сказал: «Если бы я был в состоянии запомнить названия всех этих частиц, я стал бы ботаником».) Лишь после десятилетий кропотливой работы этот густонаселенный зоопарк удалось организовать хоть в какую-то систему под названием Стандартная модель. Миллиарды долларов, тяжкий труд тысяч инженеров и физиков и 20 Нобелевских премий позволили сложить мозаику Стандартной модели буквально по кусочкам. Это поистине замечательная теория, соответствующая, насколько можно судить, всем экспериментальным данным субатомной физики.

Но Стандартная модель, несмотря на экспериментальный успех, обладает одним очень серьезным недостатком. Как говорит Стивен Хокинг, «она некрасива и достаточно произвольна». В ней по крайней мере 19 свободных параметров (в том числе масса частицы и сила ее взаимодействия с другими частицами), 36 кварков и антикварков, еще три важные субатомные частицы и их античастицы и множество других субатомных частиц со странными названиями, таких как глюоны Янга-Миллза, бозоны Хиггса, W-бозоны и Z-частицы. Хуже того, Стандартная модель ничего не говорит о гравитации. Трудно поверить, что природа на самом первичном, базовом уровне может быть столь запутанной и в высшей степени неэлегантной. Эту теорию мог бы полюбить только человек, вложивший в нее свою душу. Отсутствия красоты в Стандартной модели оказалось достаточно, чтобы физики захотели заново проанализировать свои представления о природе. Что-то здесь было не так.

Если внимательно рассмотреть развитие физики за последние несколько столетий, окажется, что одним из важнейших достижений последнего из них стало сведение всех фундаментальных физических законов в две великие теории: квантовую теорию (представленную Стандартной моделью) и общую теорию относительности Эйнштейна (которая описывает гравитацию). Замечательно, что вместе эти две теории представляют всю сумму физических знаний на фундаментальном уровне. Первая теория описывает мир очень малого — субатомный квантовый мир, где частицы исполняют свой фантастический танец, возникают из ничего и тут же пропадают снова и к тому же умудряются находиться в двух местах одновременно. Вторая теория описывает мир очень большого; ее интересуют такие предметы, как черные дыры и Большой взрыв; она пользуется языком гладких поверхностей, растянутого полотна и искаженного пространства. Эти теории во всем противоположны друг другу, они используют разную математику, разные аксиомы и разную физическую картину мира. При взгляде на них создается впечатление, что у природы две руки, совершенно не связанных друг с другом. Мало того, все попытки объединить обе теории не привели ни к каким разумным результатам. На протяжении полувека каждый физик, пытавшийся под дулом пистолета поженить квантовую теорию и общую теорию относительности, неожиданно для себя обнаруживал, что при любой попытке добиться своего теория разлетается в клочья и дает в ответ бесконечность, лишенную всякого смысла.

Все изменилось с появлением на сцене теории суперструн, которая утверждает, что электрон и другие субатомные частицы представляют собой не что иное, как различные колебания струны, работающей примерно как крошечная резиновая лента. Если дернуть за натянутую резинку, она будет вибрировать на разные лады — при этом каждая нота соответствует конкретной субатомной частице. Таким образом, теория суперструн объясняет существование сотен субатомных частиц, обнаруженных учеными при помощи ускорителей. Более того, теория Эйнштейна тоже укладывается в эту теорию как проявление одного из самых низкочастотных колебаний.

Теорию струн даже превозносили как пресловутую «теорию всего», ускользавшую от Эйнштейна последние 30 лет его жизни. Эйнштейну нужна была единая понятная теория, которая объединила бы в себе все законы физики и позволила ему «узнать, о чем думает Бог». Если теория струн верно объединила гравитацию и квантовую теорию, го она, возможно, представляет собой величайшее достижение науки за последние 2000 лет — с того самого момента, когда греки впервые задались вопросом: что есть вещество?

Но у теории суперструн есть одна очень странная особенность: эти самые струны могут колебаться только в пространстве-времени определенной размерности — а именно в десятимерном. Если попытаться сформулировать теорию струн для другого числа измерений, ничего не выйдет; математический аппарат просто развалится.

Разумеется, наша Вселенная четырехмерна (в ней три пространственных измерений и одно временное). Это означает, что остальные шесть измерений должны быть каким-то образом схлопнуты, или свернуты, подобно пятому измерению Калуцы.

В последнее время физики начали всерьез задумываться о том, чтобы доказать или, наоборот, опровергнуть существование этих высших измерений. Возможно, простейший способ убедиться в их существовании — это найти отклонения от ньютоновского закона всемирного тяготения. Из школы мы знаем, что сила притяжения Земли убывает с расстоянием. Если говорить более точно, сила взаимного притяжения убывает пропорционально квадрату расстояния, разделяющего объекты. Но это верно только потому, что мы живем в трехмерном мире. (Представьте себе сферу вокруг Земли. Сила притяжения Земли равномерно распределяется по площади этой сферы, поэтому чем больше сфера, тем слабее сила притяжения. Но площадь поверхности сферы пропорциональна квадрату ее радиуса, поэтому и сила притяжения, распределенная по поверхности сферы, должна уменьшаться пропорционально квадрату радиуса.)

Но если бы во Вселенной было четыре пространственных измерения, то сила притяжения должна была бы убывать пропорционально кубу расстояния. Вообще, если бы вселенная имела п пространственных измерений, гравитация в ней убывала бы пропорционально (n-1)-й степени расстояния. Знаменитый закон Ньютона о том, что сила притяжения обратно пропорциональна квадрату расстояния, проверен на астрономических расстояниях с большой точностью; именно поэтому мы можем направлять космические зонды с поразительной точностью сквозь щели в кольцах Сатурна. Но до недавнего времени никто не проверял этот закон в лаборатории, на очень малых расстояниях.

Первый эксперимент, призванный проверить закон обратной пропорциональности силы притяжения квадрату расстояния, был проведен в 2003 г. в Университете Колорадо. Результат эксперимента был отрицательным: по всей видимости, параллельной вселенной не существует, по крайней мере, в Колорадо ее нет. Но отрицательный результат лишь раздразнил аппетиты других физиков, которые теперь надеются повторить этот эксперимент с еще большей точностью.

Большой адронный коллайдер, который в 2008 г. вводится в строй недалеко от Женевы, будет участвовать в поисках частиц нового типа — так называемых суперчастиц, которые представляют собой высшие моды колебания суперструн (все, что вы видите вокруг, представляет собой всего лишь низшие частоты колебания суперструн). Если БАК действительно обнаружит суперчастицы, это может означать начало настоящей революции в наших взглядах на Вселенную. В новой картине Вселенной Стандартная модель попросту будет представлять низшие частоты колебания суперструн.

Кип Торн говорит: «К 2020 г. физики будут уже понимать законы квантовой гравитации, и окажется, что они являются вариантом теории струн».

Кроме высших измерений теория струн предсказывает существование и другой версии параллельных вселенных; речь идет о Мультивселенной.

Мультивселенная

Один вопрос по поводу теории струн по-прежнему не дает покоя: почему эта теория существует ни много ни мало — в пяти версиях? Действительно, теория струн способна объединить квантовую теорию и гравитацию, но сделать это, как оказалось, можно пятью способами. Это довольно неприятно, ведь физики в большинстве своем мечтали о единой и единственной «теории всего». Эйнштейн, к примеру, хотел узнать, «был ли у Бога выбор при сотворении Вселенной». Он был убежден, что единая теория поля, или теория всего, должна быть уникальна. Так почему же сегодня мы видим пять версий теории струн?

В 1994 г. в научном мире взорвалась еще одна бомба. Эдвард Уиттен из Института перспективных исследований в Принстоне и Пол Таунсенд из Кембриджского университета выдвинули предположение о том, что все пять теорий струн на самом деле представляют собой одну теорию — но только если добавить одиннадцатое измерение. При взгляде из одиннадцатого измерения все пять теорий сольются в одну! Получается, что теория действительно уникальна, но только если в качестве наблюдательного пункта выбрать вершину одиннадцатого измерения.

В одиннадцатом измерении может существовать новый математический объект, получивший название «мембрана» (к примеру, она может быть подобна поверхности сферы). Но — поразительное наблюдение — при переходе от 11 измерений к 10 из единственной мембраны появляются все пять струнных теорий — и получается, что они представляют всего лишь разные пути перевода мембраны из одиннадцатимерного мира в десятимерный.

(В качестве наглядной иллюстрации представьте себе надувной мяч с перехватывающей его по экватору резинкой. Представьте, что вы возьмете ножницы и срежете весь мяч по обе стороны от резинки. Останется только сама резинка, или струна. Точно так же, если свернуть одиннадцатое измерение, от мембраны останется только «экватор», он же струна. Математически существует пять способов убрать «мяч», или мембрану, при свертывании «лишнего» измерения—и соответственно в десятимерном пространстве мы получаем пять разных струнных теорий.)

Одиннадцатое измерение позволило нам по-новому увидеть всю картину. Возникло также предположение о том, что наша Вселенная — тоже мембрана, плавающая в одиннадцатимерном пространстве-времени. Более того, не все измерения при этом должны быть свернуты до бесконечно малых величин. Наоборот, некоторые из них могут быть бесконечными.

А что, если наша Вселенная, вместе с другими вселенными, существует в некой единой Мультивселенной? Представьте себе множество парящих в воздухе мыльных пузырей, или мембран. Каждый мыльный пузырь олицетворяет собой целую вселенную, плавающую в одиннадцатимерном гиперпространстве большего размера. Пузыри способны объединяться друг с другом или разделяться на несколько пузырей, они способны даже возникать и исчезать. Не исключено, что мы все живем на оболочке одного такого пузыря-вселенной.

Макс Тегмарк из MIT считает, что через 50 лет «существование этих "параллельных вселенных" будет вызывать не больше сомнений, чем существование иных галактик, которые тогда называли "островными вселенными", вызывало сомнений 100 лет назад».

Сколько вселенных предсказывает теория струн? Довольно неприятной чертой теории струн является как раз тот факт, что вселенных может быть множество — многие триллионы вселенных, каждая из которых вполне согласуется с теорией относительности и квантовой теорией. Согласно одной из оценок, может существовать целый гугол таких вселенных. (Гугол—это единица со ста нулями.]

В обычных условиях связь между вселенными невозможна. Атомы нашего тела подобны мухам на липкой бумаге. Мы можем свободно передвигаться в трех измерениях нашей вселенной-мембраны, но не способны «выпрыгнуть» из нее в гиперпространство, потому что приклеены к нашей Вселенной. Но гравитация, которая представляет собой искажение пространства-времени, может свободно плавать в пространстве между вселенными.

Существует теория, утверждающая, что скрытая масса, или темная материя, — некое невидимое вещество, окружающее нашу Галактику, — возможно, представляет собой обычное вещество в параллельной вселенной. Как говорится еще в романе Герберта Уэллса «Человек-невидимка», наблюдатель будет невидим для нас, если будет находиться прямо над нами в четвертом измерении. Представьте себе два параллельных листа бумаги и наблюдателя, который находится на втором листе и видит под собой первый.

Существуют и другие предположения — к примеру, что скрытая масса может представлять собой обычную галактику, парящую прямо над нами в другой вселенной-мембране. Мы ощущаем гравитацию этой галактики — ведь гравитация способна проникнуть всюду, даже между вселенными, — но сама галактика остается для нас невидимой, потому что любой свет заперт в своей вселенной. Таким образом, мы имеем невидимую галактику, обладающую тем не менее массой, что вполне соответствует описанию скрытой массы. (Еще одна возможность состоит в том, что скрытая масса представляет собой следующую моду колебаний суперструны. Все, что мы видим вокруг, представляет собой не что иное, как низшую моду этих самых колебаний. Не исключено, что темная материя — набор следующих по частоте колебаний суперструны.)

Конечно, большинство параллельных вселенных, скорее всего, мертвы и представляют собой бесформенное скопление субатомных частиц, таких как электроны и нейтрино. В этих вселенных протон может быть нестабилен, поэтому все вещество в том виде, в каком мы его знаем, будет постепенно разлагаться и растворяться в пространстве. Вероятно, во многих вселенных сложное вещество, состоящее из атомов и молекул, просто не может существовать.

В других параллельных вселенных, наоборот, сложные формы материи играют значительно большую роль, чем мы можем себе представить. Вместо одного типа атомов, которые строятся из протонов, нейтронов и электронов, стабильное вещество там может существовать в поразительном разнообразии форм и типов.

Мембранные вселенные способны также сталкиваться между собой, порождая космические фейерверки. Некоторые физики в Принстоне считают, что наша Вселенная зародилась, возможно, при столкновении двух гигантских мембран, которое произошло 13,7 млрд лет назад. Они считают, что.ударная волна от этого столкновения и стала причиной возникновения нашей Вселенной. Интересно, что при рассмотрении экспериментально проверяемых следствий этой необычной идеи получаются результаты, которые вполне согласуются с результатами работы спутника WMAP, находящегося в настоящее время на околоземной орбите. (Эта теория известна как теория «Большого всплеска».)

В пользу теории Мультивселенной говорит по крайней мере один факт. Если проанализировать основные физические константы, можно без труда обнаружить, что они очень точно «настроены» на то, чтобы в этих условиях могла существовать жизнь. Стоит увеличить ядерные силы — и звезды будут выгорать слишком быстро, чтобы жизнь успела возникнуть и развиться. Стоит их уменьшить — и звезды не будут вспыхивать вообще; естественно, жизнь в этом случае тоже не сможет существовать. Если увеличить силу тяготения, наша Вселенная быстро умрет в Большом сжатии; если ее немного уменьшить, она быстро расширится и замерзнет. Вообще, для того, чтобы в нашей Вселенной возникли подходящие для жизни условия, необходимы были десятки «случайностей», имеющих отношение к мировым константам. Очевидно, наша Вселенная по многим параметрам находится в «зоне жизни»; очень многое в ней «точно подобрано» для того, чтобы жизнь могла зародиться и существовать. Поэтому нам придется сделать вывод либо о существовании некоего Бога, который намеренно позаботился о той, чтобы наша Вселенная получилась такая, какая надо, либо о существовании миллиардов параллельных вселенных, многие из которых мертвы. Как сказал Фримен Дайсон, «Вселенная, похоже, заранее знала, что мы появимся».

Сэр Мартин Рис из Кембриджского университета считает, что такая точная настройка всех параметров надежно свидетельствует в пользу Мультивселенной. Все пять главных физических констант (таких, как сила фундаментальных взаимодействий) в нашей Вселенной подобраны очень точно и годятся для жизни, и он убежден, что кроме нашей существует бесконечное число вселенных, в которых физические константы не совместимы с жизнью.

Это так называемый антропный принцип, В слабом варианте этот принцип просто утверждает, что параметры нашей Вселенной точно настроены именно для жизни (и в первую очередь потому, что мы существуем и можем сделать такой вывод).

В сильном варианте антропный принцип утверждает, что наше существование, возможно, является побочным результатом чьих-то целенаправленных действий. Большинство космологов готово согласиться со слабой версией антропного принципа, но вопрос о том, что представляет собой сам принцип — новое слово в науке, открывающее дорогу к новым открытиям и разработкам, или просто утверждение очевидного.

Квантовая теория

В дополнение к высшим измерениям и Мультивселенной существует еще один тип параллельной вселенной — тот самый, что доставлял головную боль Эйнштейну и что продолжает мучить физиков и сегодня. Это квантовая вселенная, которую предсказывает обычная квантовая механика. Парадоксы квантовой физики представляются чрезвычайно трудноразрешимыми, и нобелевский лауреат Роберт Фейнман любил говорить, что ни кто на самом деле не понимает квантовой теории.

Да, квантовая теория — самая успешная теория, когда-либо разработанная человеческим разумом; да, точность ее предсказаний часто доходит до одной десятимиллиардной. Тем не менее эта теория построена на песке и полностью зависит от случая, удачи и вероятности. В отличие от теории Ньютона, которая дает точные и ясные ответы на вопросы о движении объектов, квантовая теория в состоянии назвать только вероятности. Чудеса современного мира — лазеры, Интернет, компьютеры, телевидение, сотовые телефоны, радары, микроволновые печи и т. п. — базируются на зыбучих песках вероятностей.

Возможно, самым наглядным примером этого может послужить знаменитая проблема «кошки Шрёдингера» (сформулированная одним из основателей квантовой теории, который, как ни странно, предложил эту проблему в надежде разгромить вероятностную ее интерпретацию). Шрёдингер очень злился на такую интерпретацию своей теории; он говорил: «Если действительно придется всерьез относиться к этим чертовым квантовым переходам, то я пожалею, что вообще принимал участие в этом деле».

Парадокс кошки Шрёдингера заключается в следующем: поместим кошку в запечатанный ящик. Пусть в ящике имеется заряженное ружье, нацеленное на кошку (причем спусковой крючок ружья связан со счетчиком Гейгера, рядом с которым находится кусок урана). В обычных обстоятельствах, если атом урана распадется, счетчик Гейгера сработает, ружье выстрелит, и кошка будет убита. Атом урана либо распадется, либо нет. Кошка либо будет жить, либо умрет. Это соответствует здравому смыслу.

Но в квантовой теории мы не можем знать наверняка, распался атом урана или нет. Поэтому мы должны сложить эти две возможности, т.е. сложить волновую функцию распавшегося атома с волновой функцией целого атома. Но это означает, что для описания кошки нам придется сложить два ее состояния. Так что кошка у нас окажется ни живой, ни мертвой. Она будет представлена как сумма живой кошки и мертвой кошки!

Фейнман однажды написал, что квантово-механическое описание природы «абсурдно с точки зрения здравого смысла, и при этом оно полностью согласуется с экспериментом — так что, я надеюсь, вы сможете принять эту природу в ее абсурдном образе».

Эйнштейну и Шрёдингеру такой взгляд представлялся нелепым. Эйнштейн верил в «объективную реальность», здравый смысл, ньютоновский взгляд на мир, где объекты существовали в одном определенном состоянии, а не как сумма множества возможных состояний. Тем не менее в основе современной цивилизации лежит именно такая необычная интерпретация. Без нее не смогла бы существовать современная электроника (да и атомы нашего тела тоже). (В обычном мире мы иногда шутим, что невозможно быть «немножко беременной». Но в квантовом мире дело обстоит еще хуже. Женщина в нем существовала бы как сумма одновременно всех возможных состояний ее тела: она была бы одновременно небеременной, беременной, девочкой, старухой, девушкой, деловой женщиной и т. п.)

Существует несколько способов разрешить этот неприятный парадокс. Основатели квантовой теории верили в так называемую копенгагенскую интерпретацию и считали, что, как только вы откроете ящик, вы сможете провести измерения и определить, жива кошка или мертва. После этого — все. Волновая функция «зафиксировалась» в одном из состояний; после этого здравый смысл берет верх. Волны исчезают, остаются одни частицы. Это означает, что кошка наконец приходит в определенное состояние (или живое, или мертвое), и ее уже не нельзя описывать волновыми функциями.

Таким образом, существует невидимый барьер, разделяющий причудливый мир атомов и макроскопический мир людей, В атомном мире все описывается через волны вероятностей, и атомы могут находиться в нескольких местах одновременно. Чем больше волновая функция частицы в данной точке, тем больше вероятность обнаружить частицу именно здесь. Но в мире больших объектов волновые функции уже зафиксированы, и объекты существуют в определенном состоянии. В макромире царит здравый смысл.

(Когда к Эйнштейну приходили гости, он показывал на Луну и спрашивал: «Неужели Луна существует потому, что на нее смотрит мышь?» В каком-то смысле копенгагенская школа давала на этот вопрос положительный ответ.)

В большинстве серьезных учебников по физике с религиозной точностью излагается точка зрения копенгагенской школы, но многие физики-исследователи от нее уже отказались. Теперь у нас есть нанотехнологии, мы можем оперировать отдельными атомами — и получается, что атомами, которые то возникают, то исчезают, тоже можно произвольно манипулировать, хотя бы при помощи туннельного сканирующего микроскопа. Таким образом, невидимой «стены», разделяющей микромир и макромир, не существует. Мир един.

В настоящее время у физиков нет единого мнения о том, как разрешить эту проблему, лежащую в самом сердце современной физики. На конференциях происходят жаркие споры, сталкиваются многочисленные теории. Кое-кто полагает, что должно существовать некое «космическое сознание», пронизывающее Вселенную. Объекты возникают, начинают существовать, когда производятся измерения, а измерения производят существа, обладающие сознанием. Следовательно, должно существовать единое космическое сознание, которое пронизывает всю Вселенную и определяет, в каком состоянии мы находимся. Некоторые подобно нобелевскому лауреату Юджину Вигнеру утверждают, что это доказывает существование Бога или, по крайней мере, некоего космического сознания. (Вигнер писал: «Невозможно было сформулировать законы [квантовой теории] совершенно последовательно без ссылки на сознание». Он даже проявил интерес к ведической философии индуизма, согласно которой нашу Вселенную пронизывает единое всеобъемлющее сознание.)

Еще один взгляд на парадокс кошки — идея «множественности миров»[30], предложенная Хью Эвереттом в 1957 г. Эта теория утверждает, что Вселенная просто расщепляется надвое, причем в одной половине кошка остается живой, в другой — мертвой. Это означает, что каждый раз, когда происходит квантовое событие, параллельные вселенные размножаются или ветвятся. Существует любая вселенная, какая только может существовать. Чем причудливее вселенная, тем она менее вероятна, но все же такие вселенные существуют. Это означает, что существует параллельный мир, где нацисты выиграли Вторую мировую войну, и мир, где Великая испанская армада не была разбита и все теперь говорят по-испански. Другими словами, волновые функции никогда не схлопываются и не фиксируются в каком-то определенном состоянии. Они продолжают жить своей жизнью, а Вселенная жизнерадостно ветвится и расщепляется на бесконечное число параллельных вселенных.

Физик Алан Гут из Массачусетского технологического института говорит: «Существует вселенная, где Элвис до сих пор жив, а Альберт Гор стал президентом». Нобелевский лауреат Фрэнк Вильчек говорит: «Нас мучает сознание того, что бесчисленное количество наших почти точных копий живет своей параллельной жизнью и что каждое мгновение возникает еще больше наших дублей, чтобы разделить с нами множество вариантов нашего будущего».

В настоящее время среди физиков набирает популярность концепция так называемой декогерентности. Эта теория утверждает, что все параллельные вселенные возможны, но наша волновая функция потеряла когерентность с ними (т.е. уже не колеблется в унисон с другими вселенными) и потому не может с ними взаимодействовать. Это означает, что вы в собственной гостиной сосуществуете с волновыми функциями динозавров, инопланетных пришельцев, пиратов, единорогов и каждый из обитателей свято верит в то, что именно его вселенная является «настоящей»; но все эти сосуществующие вселенные больше не «настроены в тон» друг с другом.

Нобелевский лауреат Стивен Вайнберг сравнивает такую ситуацию с настройкой радиоприемника. Вы прекрасно знаете, что ваша гостиная буквально затоплена сигналами десятков радиостанций со всех концов страны и мира. Но ваше радио настраивается только на одну частоту и, соответственно, только на одну станцию. При этом она «теряет когерентность» с остальными передающими станциями. (Суммируя, Вайнберг замечает, что концепция множественности миров — «убогая идея, но все остальные еще хуже».)

Подведем итог. Существует ли зловещая Федерация планет, которая грабит более слабые планеты и убивает без разбору своих врагов? Возможно, существует, но, если это так, мы потеряли когерентность с этой вселенной.

Квантовые вселенные

Хью Эверетт, конечно, пытался обсуждать свою теорию «множественности миров» с другими физиками, но получал в ответ только удивление или безразличие. Один из физиков, Брайс Девитт из Техасского университета, даже выступил против теории Эверетта, сказав: «Я просто не в состоянии почувствовать себя расщепленным». Но Эверетту такая реакция напомнила реакцию критиков Галилея, говоривших, что они не ощущают движения Земли. (Со временем Девитт перешел на сторону Эверетта и стал одним из ведущих сторонников этой теории.)

В течение нескольких десятилетий теория множественности миров прозябала в безвестности. Она просто казалась слишком фантастичной, чтобы быть верной. Джон Уилер, принстонский консультант Эверетта, в конце концов пришел к выводу, что эта концепция тянет за собой слишком много «лишнего багажа». Но в какой-то момент теория Эверетта неожиданно вошла в моду и сейчас она пользуется в мире физики серьезным интересом. Дело в том, что физики в настоящий момент пытаются применить квантовую теорию к последней области, которая до сих пор оставалась «неквантованной»: к самой Вселенной. А попытка применить принцип неопределенности ко всей Вселенной в целом естественным образом вызывает к жизни понятие Мультивселенной.

Понятие «квантовой космологии» на первый взгляд представляется терминологически противоречивым: ведь квантовая теория имеет дело с крохотным миром атомов, а в космологии идет речь о Вселенной в целом. Но подумайте вот о чем: в момент Большого взрыва Вселенная была гораздо меньше электрона. Любой физик согласится, что электрон следует рассматривать с точки зрения квантовой теории; это означает, что электрон описывается вероятностным волновым уравнением (уравнением Дирака) и может существовать в нескольких параллельных состояниях. Но если электрон следует квантовать, а Вселенная была когда-то меньше электрона, значит, Вселенная тоже должна квантоваться и существовать в параллельных состояниях. Значит, эта теория естественным образом ведет к представлению о множественности миров.

Однако копенгагенская интерпретация Нильса Бора в приложении к целой Вселенной сталкивается с серьезными трудностями. Вообще, копенгагенская интерпретация, хотя ее и изучают в каждом курсе квантовой механики для аспирантов, нуждается в «наблюдателе», наблюдения которого, собственно, и вызывают схлопывание волновой функции. Получается, что для фиксации макромира в определенном состоянии процесс наблюдения совершенно необходим. Но как можно находиться «вне» Вселенной и наблюдать за Вселенной со стороны? Если Вселенную описывает некая волновая функция, то как может «внешний» наблюдатель определить конкретное состояние Вселенной и заставить эту функцию схлопнуться? Более того, некоторые ученые считают невозможность пронаблюдать Вселенную «извне» критическим, даже фатальным недостатком копенгагенской интерпретации.

В концепции «множественных миров» эта проблема решается очень просто: Вселенная просто существует одновременно во множестве параллельных состояний, которые определяются главной волновой функцией, известной под названием волновая функция Вселенной. Согласно квантовой космологии, Вселенная возникла как квантовая флуктуация вакуума, т.е. как крошечный пузырек пространственно-временной пены. Большинство новорожденных вселенных пространственно-временной пены переживает большой взрыв, а затем сразу — большое сжатие. Это означает, что даже в «пустоте» кипит непрекращающаяся активность, возникают и тут же пропадают крошечные вселенные, но масштаб этих событий слишком мал для наших грубых приборов. Однажды по какой-то причине один из пузырьков пространственно-временной пены не схлопнулся обратно и не исчез в собственном Большом сжатии, а продолжал расширяться.

Это и была наша Вселенная. Если послушать Алана Гута, то получится, что вся наша Вселенная — одна большая халява.

В квантовой космологии физики берут для начала аналог уравнения Шрёдингера, описывающего волновые функции электронов и атомов. Они используют также уравнение Девитта-Уилера, действующего на «волновой функции Вселенной». Обычно волновая функция Шрёдингера определена в каждой точке пространства и времени, поэтому мы можем вычислить вероятность обнаружения электрона в любой заданной точке пространства и времени. Но «волновая функция Вселенной» определена на множестве всех возможных вселенных. Если окажется, что эта волновая функция для конкретной вселенной велика, это будет означать, что данная Вселенная с большой вероятностью находится именно в этом состоянии.

Хокинг поддерживает именно эту точку зрения. Он утверждает, что наша Вселенная особая, она уникальна и отличается от всех прочих вселенных. Если волновая функция нашей Вселенной велика, то для большинства остальных она почти равна нулю. Получается, что существует ненулевая, но очень небольшая вероятность того, что в Мультивселенной могут существовать и другие вселенные, кроме нашей, но наша Вселенная существует с максимальной вероятностью. Вообще, Хокинг пытается таким образом логически обосновать явление инфляции. В этой картине мира вселенная, в которой начинается процесс инфляции, просто более вероятна, чем вселенная, где ничего подобного не происходит, поэтому в нашей Вселенной такой процесс имел место.

Теория о происхождении нашей Вселенной из «пустоты» пространственно-временной пены на первый взгляд представляется совершенно непроверяемой; тем не менее она согласуется с несколькими простыми наблюдениями. Во-первых, многие физики указывали на тот поразительный факт, что сумма положительного и отрицательного электрического заряда в нашей Вселенной равняется нулю — по крайней мере в пределах экспериментальной погрешности. Нам кажется естественным, что доминирующей силой в космосе является гравитация, но ведь происходит это лишь потому, что отрицательные и положительные заряды в точности компенсируют друг друга. Если бы на Земле существовал хотя бы малейший дисбаланс между положительными и отрицательными зарядами, электрические силы, вполне возможно, преодолели бы силы гравитационного притяжения, связывающие Землю воедино, и просто разорвали бы нашу планету. Точное равновесие между суммарным положительным и отрицательным зарядами можно легко объяснить, в частности, тем, что Вселенная возникла из «ничего», а «ничто» обладает нулевым электрическим зарядом.

Во-вторых, наша Вселенная обладает нулевым спином. Курт Гёдель много лет пытался доказать, что наша Вселенная вращается, путем анализа и суммирования спинов различных галактик, но на сегодняшний день астрономы убеждены: суммарный спин нашей Вселенной равен нулю. Опять же этот факт можно легко объяснить тем, что Вселенная возникла из «ничего», а «ничто» обладает нулевым спином.

В-третьих, возникновение Вселенной из ничего помогло бы объяснить, почему суммарное содержание в ней вещества-энергии так мало, а возможно, вообще равно нулю. Если сложить положительную энергию вещества и отрицательную энергию, связанную с гравитацией, то, судя по всему, они в точности скомпенсируют друг друга. Согласно общей теории относительности, если Вселенная замкнута и конечна, то суммарное количество вещества-энергии в ней должно равняться в точности нулю. (Если Вселенная незамкнута и бесконечна, это не обязательно верно, но инфляционная теория указывает все же, что суммарное количество вещества-энергии в нашей Вселенной чрезвычайно мало.)

Контакт между вселенными

Все это оставляет открытым один интересный вопрос. Если физики не могут исключить возможность существования нескольких типов параллельных вселенных, то можно ли вступить с ними в контакт? Посетить их? Или, может быть, существа из других вселенных уже бывали в нашем мире?

Контакт с другими квантовыми вселенными, которые потеряли синхронность с нашей, представляется весьма маловероятным. Причина того, что наша Вселенная потеряла синхронность с другими вселенными, заключается в том, что наши атомы постоянно сталкивались с другими атомами окружающего мира. Каждый раз при столкновении волновая функция атома слегка «сжимается»; а значит, число параллельных вселенных уменьшается. Каждое столкновение уменьшает число возможных вариантов. Триллионы подобных атомных «мини-коллапсов» создают в результате иллюзию того, что все атомы нашего тела полностью схлопнулись и застыли в определенном состоянии. «Объективная реальность» Эйнштейна — всего лишь иллюзия, возникающая благодаря тому, что громадное число атомов в нашем теле постоянно сталкивается друг с другом; и при каждом таком столкновении уменьшается количество возможных вселенных.

Эту ситуацию можно сравнить с расфокусированным изображением в объективе фотокамеры. Точно так же и в микромире все выглядит переменчивым и неопределенным. Но стоит вам чуть подправить фокусировку камеры, и на изображении появляются новые детали; с каждой поправкой картинка в целом становится все резче и резче. Так и триллионы крохотных столкновений атомов с соседними атомами раз за разом уменьшают число возможных вселенных. Таким образом, мы плавно переходим от переменчивого микромира к стабильному макромиру.

Поэтому вероятность взаимодействия с другой, подобной нашей, квантовой вселенной если и не равняется нулю, то стремительно падает вместе с ростом числа атомов в вашем теле. Но атомов в каждом из нас триллионы и триллионы, поэтому шанс наладить связь с другой вселенной, населенной динозаврами или инопланетянами, бесконечно мал. Можно посчитать, что ждать подобного события придется много дольше, чем будет существовать Вселенная.

Итак, мы не можем полностью исключить контакт с параллельными квантовыми вселенными, но очевидно, что событие это будет чрезвычайно редким — ведь наша Вселенная утратила когерентность с ними. Но в космологии мы встречаем и другой тип параллельной вселенной: это Мультивселенная, которая состоит из вселенных, сосуществующих одна с другой подобно мыльным пузырям в пенной ванне. Контакт с иной вселенной внутри Мультивселенной — совсем другая история. Это, безусловно, трудная проблема, но не исключено, что цивилизация III типа сумеет решить ее.

Как мы уже обсуждали, для того чтобы открыть дыру в пространстве или увеличить пространственно-временную пену, необходима энергия, сравнимая по порядку величины с планковской энергией, при которой рушатся вообще все известные физические законы. Пространство и время при этой энергии нестабильны, что открывает возможность покинуть нашу Вселенную (предполагая, разумеется, что иные вселенные существуют и мы не погибнем в процессе перехода).

Вопрос этот, вообще говоря, нельзя назвать чисто академическим, потому что когда-нибудь перед разумной жизнью во Вселенной обязательно встанет проблема гибели Вселенной. В конце концов теория Мультивселенной может оказаться спасительной для всей разумной жизни нашей Вселенной, Недавно полученные со спутника WMAP данные подтверждают тот факт, что Вселенная расширяется с ускорением, и не исключено, что когда-нибудь всем нам будет грозить гибель в виде так называемого Большого мороза. Со временем вся Вселенная почернеет; все звезды в небесах погаснут и во Вселенной останутся только мертвые звезды, нейтронные звезды и черные дыры. Даже атомы наших тел, возможно, начнут распадаться. Температура упадет почти до абсолютного нуля, и жизнь станет невозможна.

По мере приближения Вселенной к этой точке продвинутая цивилизация, оказавшаяся перед лицом окончательной гибели своего мира, вполне может задуматься о переселении в иную вселенную. Выбор у этих существ будет невелик — замерзнуть насмерть или покинуть этот мир. Законы физики станут смертным приговором для любой разумной жизни — но эти же законы, возможно, предоставят разумным существам узенькую лазейку.

Такой цивилизации придется обуздать энергию гигантских ускорителей и лазерных лучей, равных по мощности целой солнечной системе или даже звездному скоплению, и сосредоточить ее в одной-единственной точке, чтобы получить легендарную планковскую энергию. Возможно, этого будет достаточно, чтобы открыть кротовую нору или путь в иную вселенную. Не исключено, что цивилизация III типа использует подвластную ей колоссальную энергию, чтобы создать кротовую нору и уйти через нее в другую вселенную, оставив собственную Вселенную умирать и начав в новом доме новую жизнь.

Новорожденная вселенная в лаборатории?

Некоторые идеи представляются поначалу практически неосуществимыми, но физики тем не менее рассматривают их вполне серьезно. Если, к примеру, мы попытаемся понять причину и ход Большого взрыва, нам придется тщательно проанализировать условия, которые могли дать этому явлению первоначальный толчок. Другими словами, нам придется задаться вопросом: «Как изготовить новорожденную вселенную в лаборатории?» Андрей Линде из Стэнфордского университета, один из создателей концепции инфляционной вселенной, говорит, что если мы научимся создавать новорожденные вселенные, то, «возможно, нам пора будет заново определить Бога как существо более сложное, чем просто творец Вселенной».

Сама по себе идея не нова. Много лет назад, когда физики вычислили энергию, необходимую для запуска Большого взрыва, «люди немедленно начали интересоваться, что произойдет, если в лаборатории сосредоточить большое количество энергии в одной точке — ну, скажем, выстрелить одновременно из множества пушек. Можно ли сконцентрировать достаточно энергии для запуска мини-варианты Большого взрыва?» — спрашивает Линде.

Если вы сумеете сосредоточить достаточное количество энергии в одной точке, то максимум, что вы получите, — это коллапс пространства-времени и черную дыру. Но в 1981 г. Алан Гут из Массачусетского технологического института и Андрей Линде предложили теорию «инфляционной вселенной», которая за прошедшее с той поры время привлекла к себе громадный интерес космологов. Согласно этой теории, Большой взрыв начался с фазы сверхскоростного расширения, гораздо более быстрой, чем считалось ранее. (Концепция инфляционной вселенной решает многие застарелые проблемы космологии — объясняет, к примеру, почему Вселенная настолько однородна. Куда, в какую бы точку ночного неба мы ни посмотрели, везде видим совершенно одинаковую однородную Вселенную, хотя после Большого взрыва прошло недостаточно времени, чтобы отдаленные ее части успели побывать в контакте. Ответ на эту загадку, согласно инфляционной теории, заключается в том, что вся видимая Вселенная образовалась из крохотного и относительно однородного «кусочка» пространства-времени.) Пытаясь объяснить начальный толчок, Гут предположил, что в начале времен существовали крохотные пузырьки пространства-времени, один из которых чрезвычайно сильно раздулся и превратился в сегодняшнюю Вселенную.

Теория инфляционной Вселенной одним махом ответила на множество космологических вопросов. Более того, она согласуется со всеми новыми данными, полученными со спутников СОВЕ и WMAP. Это, бесспорно, ведущий кандидат на роль теории Большого взрыва.

Но теория инфляционной Вселенной поднимает и множество «неудобных» вопросов. Почему этот пузырек начал раздуваться? Почему сверхскоростное расширение прекратилось — а именно это, вообще говоря, стало причиной возникновения современной Вселенной? Если инфляционные процессы начались однажды, не могут ли они возникнуть снова? Как ни странно, хотя инфляционный сценарий представляет собой ведущую космологическую теорию, о причинах начала и прекращения инфляции почти ничего не известно.

Пытаясь найти ответ на эти мучительные вопросы, Алан Гут и Эдвард Фахри из MIT в 1987 г. задали еще один гипотетический вопрос: «Как могла бы высокоразвитая цивилизация заставить раздуваться собственную Вселенную?» Они считают, что ответ на этот вопрос позволил бы, возможно, ответить и на более глубокий вопрос: «Почему вообще началась инфляция Вселенной?»

Они обнаружили, что, если сосредоточить достаточное количество энергии в одной точке, там спонтанно будут возникать крохотные пузырьки пространства-времени. Но если эти пузырьки будут слишком маленькими, они снова исчезнут и пропадут в пространственно-временной пене. Чтобы иметь возможность раздуться до полноценной вселенной, пузырек должен быть достаточно большим.

Снаружи рождение новой вселенной выглядело бы не слишком впечатляюще — возможно, не страшнее взрыва 500-килотонной ядерной бомбы. Выглядело бы все так, как будто маленький пузырек исчез из имеющейся вселенной, оставив после себя небольшой ядерный взрыв. Но внутри пузырька при этом могла бы раздуться совершенно новая вселенная. Представьте себе мыльный пузырь, который расщепляется на два или порождает рядом крошечный новорожденный «дочерний» пузырек. Иногда этот крошечный мыльный пузырек стремительно раздувается в совершенно новый полноценный мыльный пузырь. Точно так же, находясь внутри новорожденной вселенной, вы увидели бы невероятный взрыв пространства-времени и возникновение целой вселенной.

После 1987 г. было предложено множество теорий, призванных выяснить, сможет ли подпитка энергией превратить крупный пузырек в целую вселенную. Самой общепринятой, пожалуй, является теория о том, что неизвестная пока частица по имени «инфлатон» дестабилизирует пространство-время и заставляет пузырьки формироваться и раздуваться.

Последнее противоречие было выявлено в 2006 г., когда физики начали всерьез рассматривать новое предложение «запускать» рост новорожденной вселенной при помощи монополя. Хотя до сих пор монополи — частицы только с одним магнитным полюсом, северным или южным, — никто никогда не видел, считается, что первое время именно они преобладали в молодой Вселенной. Монополи настолько массивны, что их чрезвычайно трудно создать в лаборатории; но не исключено, что именно массивность позволит им при закачке дополнительной энергии «запустить» процесс инфляции новорожденной вселенной и превращения ее в полноценную вселенную.

Зачем физикам понадобилось создавать вселенные? Линде говорит: «В перспективе каждый из нас сможет стать богом». Но для стремления непременно создать новую вселенную есть и более реальная причина: возможно, в конце концов это поможет нам уцелеть при неизбежной смерти нашей Вселенной.

Эволюция вселенных?

Некоторые физики склонны уводить эту идею еще дальше к границам научной фантастики; они задаются вопросом, не приложил ли разум «руку» к созданию нашей Вселенной?

В картине мира, соответствующей теории Гута-Фахри, высокоразвитая цивилизация вполне может создавать новые вселенные, но все физические константы (т.е. массы электрона и протона, а также интенсивность четырех фундаментальных взаимодействий) останутся прежними. А что, если высокоразвитая цивилизация была бы способна создавать новые вселенные с чуть иными, нежели их собственные, значениями физических констант? После этого новорожденные вселенные могли бы развиваться во времени, причем каждое поколение новорожденных вселенных слегка отличалось бы от прежнего.

Если рассматривать набор фундаментальных констант чем-то вроде ДНК вселенной, то получится, что разумная жизнь, вполне возможно, научится создавать новорожденные вселенные с чуть разными ДНК. Со временем созданные вселенные будут развиваться; при этом размножаться будут вселенные с наилучшей ДНК, допускающей возникновение и процветание разумной жизни. Физик Эдвард Харрисон на основании предыдущей идеи Ли Смолина выдвинул идею «естественного отбора» среди вселенных. Согласно этой идее, в Мультивселенной доминируют именно вселенные с наилучшей ДНК, что вполне согласуется с идеей возникновения высокоразвитых цивилизаций, а те, в свою очередь, создадут следующие новорожденные вселенные. «Выживание наиболее приспособленных» попросту означает выживание тех вселенных, которые наилучшим образом способствуют появлению высокоразвитых цивилизаций.

Эта картина, если она верна, объяснила бы, почему фундаментальные константы Вселенной «настроены» на жизнь. Это просто означало бы, что в Мультивселенной процветают и «размножаются именно вселенные с желаемыми (т. е. совместимыми с жизнью) константами


Птицей Гермеса меня называют, cвои крылья пожирая сам себя я укрощаю.

Аватара пользователя

artemochka
Сообщения: 1796
Зарегистрирован: 19 авг 2014, 13:04
Репутация: 41
Имя: Артемка
Благодарил (а): 290 раз
Поблагодарили: 151 раз

Re: Выпечка науки и игры

#111

Сообщение artemochka » 27 май 2015, 13:49

уголок Рубкина в действии :D :D :D :D


Самое опасное зло лишь то, что добром прикидывается.

Аватара пользователя

рубкин
Сообщения: 1138
Зарегистрирован: 02 июн 2014, 21:02
Репутация: 120
Откуда: Из хаоса безумия и кофе
Благодарил (а): 110 раз
Поблагодарили: 135 раз

Re: Выпечка науки и игры

#112

Сообщение рубкин » 27 май 2015, 14:47

artemochka писал(а):уголок Рубкина в действии :D :D :D :D
Ты прочитай, а потом уж комментируй. Тут как раз про наш спор с Джетом.


Птицей Гермеса меня называют, cвои крылья пожирая сам себя я укрощаю.

Закрыто
Яндекс.Метрика